Alqadi M, Zaharieva S, Commichau A, Disse M, Koellner T, Chiogna G (2025)
Publication Type: Journal article
Publication year: 2025
Book Volume: 17
Article Number: 3121
Journal Issue: 7
DOI: 10.3390/su17073121
In the 21st century, the adoption of solar energy has witnessed significant growth, driven by the increased use of ground-mounted photovoltaic (GPV) systems, recognized as solar farms, which have emerged as major players in this sector. Nevertheless, their extensive land utilization may impact local ecosystem services (ESSs), especially those related to water resources. In the context of the water–energy–food–ecosystem (WEFE) nexus, it becomes vital to investigate how solar park construction will impact water-related ESSs. This paper developed a framework that assesses the effect of constructing a solar park on water-related ecosystem services. We focused on solar farm construction and its interactions with various hydrological cycle components; then, we evaluated the implications for water-related ESSs. This approach encompasses a systematic literature review that identifies the hydrological factors most affected by the construction of solar farms. As a result, thirteen ESSs were selected to be included in an evaluation framework, and a definition of a scoring system of each ESS was defined based on the economic value, a predetermined indicator, or land use and land cover (LULC) properties. The allocation of weighting factors for these scores can be determined based on individual experience and stakeholders. This study presents a DSS-integrated framework to assess the impact of solar park constructions on water-related ecosystem services (ESSs) within the WEFE nexus. The framework was applied to a case study in Darstadt, Bavaria, revealing that, among the water-related ESSs in favor of ground-mounted PV systems (GPVs) compared to traditional agricultural practices, there could be soil erosion and nitrate leaching reduction. The DSS tool enables stakeholders to efficiently evaluate trade-offs between energy production and ecosystem impacts. The findings underscore the potential of integrating renewable energy projects with ecosystem management strategies to promote sustainable land-use practices.
APA:
Alqadi, M., Zaharieva, S., Commichau, A., Disse, M., Koellner, T., & Chiogna, G. (2025). Developing and Implementing a Decision Support System-Integrated Framework for Evaluating Solar Park Effects on Water-Related Ecosystem Services. Sustainability, 17(7). https://doi.org/10.3390/su17073121
MLA:
Alqadi, Mohammad, et al. "Developing and Implementing a Decision Support System-Integrated Framework for Evaluating Solar Park Effects on Water-Related Ecosystem Services." Sustainability 17.7 (2025).
BibTeX: Download