Nanofibrillar networks enable universal assembly of superstructured particle constructs

Mattos BD, Tardy BL, Greca LG, Kämäräinen T, Xiang W, Cusola O, Magalhães WL, Rojas OJ (2020)


Publication Type: Journal article

Publication year: 2020

Journal

Book Volume: 6

Article Number: eaaz7328

Journal Issue: 19

DOI: 10.1126/sciadv.aaz7328

Abstract

Superstructured colloidal materials exploit the synergies between components to develop new or enhanced functions. Cohesion is a primary requirement for scaling up these assemblies into bulk materials, and it has only been fulfilled in case-specific bases. Here, we demonstrate that the topology of nanonetworks formed from cellulose nanofibrils (CNFs) enables robust superstructuring with virtually any particle. An intermixed network of fibrils with particles increases the toughness of the assemblies by up to three orders of magnitude compared, for instance, to sintering. Supramolecular cohesion is transferred from the fibrils to the constructs following a power law, with a constant decay factor for particle sizes from 230 nm to 40 μm. Our findings are applicable to other nanofiber dimensions via a rationalization of the morphological aspects of both particles and nanofibers. CNF-based cohesion will move developments of functional colloids from laboratory-scale toward their implementation in large-scale nanomanufacturing of bulk materials.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Mattos, B.D., Tardy, B.L., Greca, L.G., Kämäräinen, T., Xiang, W., Cusola, O.,... Rojas, O.J. (2020). Nanofibrillar networks enable universal assembly of superstructured particle constructs. Science Advances, 6(19). https://doi.org/10.1126/sciadv.aaz7328

MLA:

Mattos, B. D., et al. "Nanofibrillar networks enable universal assembly of superstructured particle constructs." Science Advances 6.19 (2020).

BibTeX: Download