Topological strong-field physics on sub-laser-cycle timescale

Silva REF, Jimenez-Galan A, Amorim B, Smirnova O, Ivanov M (2019)


Publication Type: Journal article

Publication year: 2019

Journal

Book Volume: 13

Pages Range: 849-854

Journal Issue: 12

DOI: 10.1038/s41566-019-0516-1

Abstract

The sub-laser-cycle timescale of the electronic response to strong fields enables attosecond dynamical imaging in atoms, molecules and solids1–4, with optical tunnelling and high-harmonic generation the hallmarks of attosecond optical spectroscopy2,5–7. Topological insulators are intimately linked with electron dynamics, as manifested via the chiral edge currents8, but it is unclear if and how topology leaves its mark on optical tunnelling and sub-cycle electronic response. Here, we identify distinct bulk topological effects on directionality and timing of currents arising during electron injection into conduction bands. We show that electrons tunnel differently in trivial and topological insulators, for the same band structure, and identify the key role of the Berry curvature in this process. These effects map onto topologically dependent attosecond delays and helicities of emitted harmonics that record the phase diagram of the system. Our findings create new roadmaps in studies of topological systems, building on the ubiquitous properties of the sub-laser-cycle strong-field response—a unique mark of attosecond science.

Involved external institutions

How to cite

APA:

Silva, R.E.F., Jimenez-Galan, A., Amorim, B., Smirnova, O., & Ivanov, M. (2019). Topological strong-field physics on sub-laser-cycle timescale. Nature Photonics, 13(12), 849-854. https://doi.org/10.1038/s41566-019-0516-1

MLA:

Silva, R. E. F., et al. "Topological strong-field physics on sub-laser-cycle timescale." Nature Photonics 13.12 (2019): 849-854.

BibTeX: Download