Laser-induced electron diffraction in the over-the-barrier-ionization regime

Belsa B, Ziems KM, Sanchez A, Chirvi K, Liu X, Gräfe S, Biegert J (2022)


Publication Type: Journal article

Publication year: 2022

Journal

Book Volume: 106

Article Number: 043105

Journal Issue: 4

DOI: 10.1103/PhysRevA.106.043105

Abstract

Large polyatomic molecules typically exhibit low ionization potentials, Ip, leading to over-the-barrier ionization (OBI) already at relatively low intensities (∼1013 W/cm2). We revisit laser-induced electron diffraction (LIED) in the over-the-barrier-ionization (OBI) regime and answer the question of whether imaging of molecular structure is still possible with LIED. We employ a hydrogenlike model system mimicking a molecule with low Ip using a classical trajectory-based model that incorporates the Coulomb potential; we also use the numerical solution to the time-dependent Schrödinger equation. Specifically, we adopt the Fourier transform variant of LIED to show that even a significant contribution of short trajectories in the OBI regime does not preclude structure retrieval from strong-field diffractive patterns. This theoretical investigation shows that LIED can be well described by the classical recollision model even when ionization occurs within the OBI regime. This study paves the way towards strong-field imaging of chemical transformations of large polyatomic molecules in real time based on strong-field electron recollision.

Involved external institutions

How to cite

APA:

Belsa, B., Ziems, K.M., Sanchez, A., Chirvi, K., Liu, X., Gräfe, S., & Biegert, J. (2022). Laser-induced electron diffraction in the over-the-barrier-ionization regime. Physical Review A, 106(4). https://doi.org/10.1103/PhysRevA.106.043105

MLA:

Belsa, Blanca, et al. "Laser-induced electron diffraction in the over-the-barrier-ionization regime." Physical Review A 106.4 (2022).

BibTeX: Download