Klose C, Breitwieser M, Vierrath S, Klingele M, Cho H, Buchler A, Kerres J, Thiele S (2017)
Publication Type: Journal article
Publication year: 2017
Book Volume: 361
Pages Range: 237-242
DOI: 10.1016/j.jpowsour.2017.06.080
We show that the combination of direct membrane deposition with proton conductive nanofiber reinforcement yields highly durable and high power density fuel cells. Sulfonated poly(ether ketone) (SPEK) was directly electrospun onto gas diffusion electrodes and then filled with Nafion by inkjet-printing resulting in a 12 μm thin membrane. The ionic membrane resistance (30 mΩ*cm2) was well below that of a directly deposited membrane reinforced with chemically inert (PVDF-HFP) nanofibers (47 mΩ*cm2) of comparable thickness. The power density of the fuel cell with SPEK reinforced membrane (2.04 W/cm2) is 30% higher than that of the PVDF-HFP reinforced reference sample (1.57 W/cm2). During humidity cycling and open circuit voltage (OCV) hold, the SPEK reinforced Nafion membrane showed no measurable degradation in terms of H
APA:
Klose, C., Breitwieser, M., Vierrath, S., Klingele, M., Cho, H., Buchler, A.,... Thiele, S. (2017). Electrospun sulfonated poly(ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes. Journal of Power Sources, 361, 237-242. https://doi.org/10.1016/j.jpowsour.2017.06.080
MLA:
Klose, Carolin, et al. "Electrospun sulfonated poly(ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes." Journal of Power Sources 361 (2017): 237-242.
BibTeX: Download