Tuning the effective spin-orbit coupling in molecular semiconductors

Schott S, Mcnellis ER, Nielsen CB, Chen HY, Watanabe S, Tanaka H, Mcculloch I, Takimiya K, Sinova J, Sirringhaus H (2017)


Publication Type: Journal article

Publication year: 2017

Journal

Book Volume: 8

Article Number: 15200

DOI: 10.1038/ncomms15200

Abstract

The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 ms, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

Involved external institutions

How to cite

APA:

Schott, S., Mcnellis, E.R., Nielsen, C.B., Chen, H.-Y., Watanabe, S., Tanaka, H.,... Sirringhaus, H. (2017). Tuning the effective spin-orbit coupling in molecular semiconductors. Nature Communications, 8. https://doi.org/10.1038/ncomms15200

MLA:

Schott, Sam, et al. "Tuning the effective spin-orbit coupling in molecular semiconductors." Nature Communications 8 (2017).

BibTeX: Download