Rotation Invariance for Unsupervised Cell Representation Learning: Analysis of The Impact of Enforcing Rotation Invariance or Equivariance on Representation for Cell Classification

Gräbel P, Laube I, Crysandt M, Herwartz R, Baumann M, Klinkhammer BM, Boor P, Brümmendorf TH, Merhof D (2021)


Publication Type: Conference contribution

Publication year: 2021

Journal

Publisher: Springer Science and Business Media Deutschland GmbH

Pages Range: 42-47

Conference Proceedings Title: Informatik aktuell

Event location: Regensburg, DEU

ISBN: 9783658331979

DOI: 10.1007/978-3-658-33198-6_12

Involved external institutions

How to cite

APA:

Gräbel, P., Laube, I., Crysandt, M., Herwartz, R., Baumann, M., Klinkhammer, B.M.,... Merhof, D. (2021). Rotation Invariance for Unsupervised Cell Representation Learning: Analysis of The Impact of Enforcing Rotation Invariance or Equivariance on Representation for Cell Classification. In Christoph Palm, Heinz Handels, Klaus Maier-Hein, Thomas M. Deserno, Andreas Maier, Thomas Tolxdorff (Eds.), Informatik aktuell (pp. 42-47). Regensburg, DEU: Springer Science and Business Media Deutschland GmbH.

MLA:

Gräbel, Philipp, et al. "Rotation Invariance for Unsupervised Cell Representation Learning: Analysis of The Impact of Enforcing Rotation Invariance or Equivariance on Representation for Cell Classification." Proceedings of the German Workshop on Medical Image Computing, 2021, Regensburg, DEU Ed. Christoph Palm, Heinz Handels, Klaus Maier-Hein, Thomas M. Deserno, Andreas Maier, Thomas Tolxdorff, Springer Science and Business Media Deutschland GmbH, 2021. 42-47.

BibTeX: Download