Schottky barrier-based silicon nanowire pH sensor with live sensitivity control

Zoergiebel FM, Pregl S, Roemhildt L, Opitz J, Weber WM, Mikolajick T, Baraban L, Cuniberti G (2014)


Publication Type: Journal article

Publication year: 2014

Journal

Book Volume: 7

Pages Range: 263-271

Journal Issue: 2

DOI: 10.1007/s12274-013-0393-8

Abstract

We demonstrate a pH sensor based on ultrasensitive nanosize Schottky junctions formed within bottom-up grown dopant-free arrays of assembled silicon nanowires. A new measurement concept relying on a continuous gate sweep is presented, which allows the straightforward determination of the point of maximum sensitivity of the device and allows sensing experiments to be performed in the optimum regime. Integration of devices into a portable fluidic system and an electrode isolation strategy affords a stable environment and enables long time robust FET sensing measurements in a liquid environment to be carried out. Investigations of the physical and chemical sensitivity of our devices at different pH values and a comparison with theoretical limits are also discussed. We believe that such a combination of nanofabrication and engineering advances make this Schottky barrier-powered silicon nanowire lab-on-a-chip platform suitable for efficient biodetection and even for more complex biochemical analysis. © 2014 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

Involved external institutions

How to cite

APA:

Zoergiebel, F.M., Pregl, S., Roemhildt, L., Opitz, J., Weber, W.M., Mikolajick, T.,... Cuniberti, G. (2014). Schottky barrier-based silicon nanowire pH sensor with live sensitivity control. Nano Research, 7(2), 263-271. https://dx.doi.org/10.1007/s12274-013-0393-8

MLA:

Zoergiebel, Felix M., et al. "Schottky barrier-based silicon nanowire pH sensor with live sensitivity control." Nano Research 7.2 (2014): 263-271.

BibTeX: Download