Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni50Mn35In15

Zavareh MG, Mejia CS, Nayak AK, Skourski Y, Wosnitza J, Felser C, Nicklas M (2015)


Publication Type: Journal article

Publication year: 2015

Journal

Book Volume: 106

Article Number: 071904

Journal Issue: 7

DOI: 10.1063/1.4913446

Abstract

We have studied the magnetocaloric effect (MCE) in the shape-memory Heusler alloy Ni50Mn35In15 by direct measurements in pulsed magnetic fields up to 6 and 20 T. The results in 6 T are compared with data obtained from heat-capacity experiments. We find a saturation of the inverse MCE, related to the first-order martensitic transition, with a maximum adiabatic temperature change of ΔTad = -7 K at 250 K and a conventional field-dependent MCE near the second-order ferromagnetic transition in the austenitic phase. The pulsed magnetic field data allow for an analysis of the temperature response of the sample to the magnetic field on a time scale of ∼10 to 100 ms, which is on the order of typical operation frequencies (10-100 Hz) of magnetocaloric cooling devices. Our results disclose that in shape-memory alloys, the different contributions to the MCE and hysteresis effects around the martensitic transition have to be carefully considered for future cooling applications.

Involved external institutions

How to cite

APA:

Zavareh, M.G., Mejia, C.S., Nayak, A.K., Skourski, Y., Wosnitza, J., Felser, C., & Nicklas, M. (2015). Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni50Mn35In15. Applied Physics Letters, 106(7). https://doi.org/10.1063/1.4913446

MLA:

Zavareh, M. Ghorbani, et al. "Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni50Mn35In15." Applied Physics Letters 106.7 (2015).

BibTeX: Download