Tuning the flexibility in MOFs by SBU functionalization

Bon V, Kavoosi N, Senkovska I, Mueller P, Schaber J, Wallacher D, Toebbens DM, Mueller U, Kaskel S (2016)


Publication Type: Journal article

Publication year: 2016

Journal

Book Volume: 45

Pages Range: 4407-4415

Journal Issue: 10

DOI: 10.1039/c5dt03504j

Abstract

A new approach for the fine tuning of flexibility in MOFs, involving functionalization of the secondary building unit, is presented. The "gate pressure" MOF [Zn3(bpydc)2(HCOO)2] was used as a model material and SBU functionalization was performed by using monocarboxylic acids such as acetic, benzoic or cinnamic acids instead of formic acid in the synthesis. The resulting materials are isomorphous to [Zn3(bpydc)2(HCOO)2] in the "as made" form, but show different structural dynamics during the guest removal. The activated materials have entirely different properties in the nitrogen physisorption experiments clearly showing the tunability of the gate pressure, at which the structural transformation occurs, by using monocarboxylic acids with varying backbone structure in the synthesis. Thus, increasing the number of carbon atoms in the backbone leads to the decreasing gate pressure required to initiate the structural transition. Moreover, in situ adsorption/PXRD data suggest differences in the mechanism of the structural transformations: from "gate opening" in the case of formic acid to "breathing" if benzoic acid is used.

Involved external institutions

How to cite

APA:

Bon, V., Kavoosi, N., Senkovska, I., Mueller, P., Schaber, J., Wallacher, D.,... Kaskel, S. (2016). Tuning the flexibility in MOFs by SBU functionalization. Dalton Transactions, 45(10), 4407-4415. https://doi.org/10.1039/c5dt03504j

MLA:

Bon, Volodymyr, et al. "Tuning the flexibility in MOFs by SBU functionalization." Dalton Transactions 45.10 (2016): 4407-4415.

BibTeX: Download