Quenched hexacene optoacoustic nanoparticles

Nunes A, Pansare VJ, Beziere N, Ntoukas AK, Reber J, Bruzek M, Anthony J, Prud'Homme RK, Ntziachristos V (2017)


Publication Type: Journal article

Publication year: 2017

Journal

Book Volume: 6

Pages Range: 44-55

Journal Issue: 1

DOI: 10.1039/c7tb02633a

Abstract

Optoacoustic (photoacoustic) imaging enables high-resolution optical imaging at depths well beyond optical microscopy, revolutionizing optical interrogation of tissues. Operation in the near-infrared (NIR) is nevertheless necessary to capitalize on the technology potential and reach depths of several centimeters. Using Flash NanoPrecipitation for highly-scalable single-step encapsulation of hydrophobic hexacene at self-quenching concentrations, we propose quenched fluorescence-dye nanoparticles as a potent alternative to NIR metal nanoparticles for strong optoacoustic signal generation. Comprehensive hexacene-based nanoparticle characterization was based on a 5-step approach that examined the physicochemical features (Step 1), optoacoustic signal generation (Step 2), stability (Step 3), biocompatibility (Step 4) and spectral sensitivity (Step 5). Using this characterization framework we showcase the discovery of two nanoparticle formulations, QH2-50 nm and QH2-100 nm that attain superior stability characteristics and optimal optoacoustic properties compared to gold standards commonly employed for near-infrared optoacoustics. We discuss encapsulation and self-quenching (ESQ) of organic dyes as a promising strategy to generate optimal optoacoustic particles.

Involved external institutions

How to cite

APA:

Nunes, A., Pansare, V.J., Beziere, N., Ntoukas, A.K., Reber, J., Bruzek, M.,... Ntziachristos, V. (2017). Quenched hexacene optoacoustic nanoparticles. Journal of Materials Chemistry B, 6(1), 44-55. https://doi.org/10.1039/c7tb02633a

MLA:

Nunes, Antonio, et al. "Quenched hexacene optoacoustic nanoparticles." Journal of Materials Chemistry B 6.1 (2017): 44-55.

BibTeX: Download