Human pose estimation from pressure sensor data

Casas L, Mürwald C, Achilles F, Mateus D, Huber D, Navab N, Demirci S (2018)


Publication Type: Conference contribution

Publication year: 2018

Journal

Publisher: Springer Science and Business Media Deutschland GmbH

Book Volume: 0

Pages Range: 285-290

Conference Proceedings Title: Informatik aktuell

Event location: Erlangen, DEU

ISBN: 9783540295945

DOI: 10.1007/978-3-662-56537-7_77

Abstract

In-bed motion monitoring has become of great interest for a variety of clinical applications. In this paper, we introduce a hashbased learning method to retrieve human poses from pressure sensors data in real time considering temporal correlation between poses. The basis of our approach is a multimodal database describing different in-bed activities. Database entries have been created using an array of pressure sensors and an additional motion capture system. Our results show good performance even in poses where the subject has minimal contact with the sensors.

Involved external institutions

How to cite

APA:

Casas, L., Mürwald, C., Achilles, F., Mateus, D., Huber, D., Navab, N., & Demirci, S. (2018). Human pose estimation from pressure sensor data. In Andreas Maier, Thomas M. Deserno, Heinz Handels, Klaus H. Maier-Hein, Christoph Palm, Thomas Tolxdorff (Eds.), Informatik aktuell (pp. 285-290). Erlangen, DEU: Springer Science and Business Media Deutschland GmbH.

MLA:

Casas, Leslie, et al. "Human pose estimation from pressure sensor data." Proceedings of the Workshop on Bildverarbeitung fur die Medizin, 2018, Erlangen, DEU Ed. Andreas Maier, Thomas M. Deserno, Heinz Handels, Klaus H. Maier-Hein, Christoph Palm, Thomas Tolxdorff, Springer Science and Business Media Deutschland GmbH, 2018. 285-290.

BibTeX: Download