Variational uncalibrated photometric stereo under general lighting

Haefner B, Ye Z, Gao M, Wu T, Queau Y, Cremers D (2019)


Publication Type: Conference contribution

Publication year: 2019

Publisher: Institute of Electrical and Electronics Engineers Inc.

Book Volume: 2019-October

Pages Range: 8538-8547

Conference Proceedings Title: Proceedings of the IEEE International Conference on Computer Vision

Event location: Seoul, KOR

ISBN: 9781728148038

DOI: 10.1109/ICCV.2019.00863

Abstract

Photometric stereo (PS) techniques nowadays remain constrained to an ideal laboratory setup where modeling and calibration of lighting is amenable. To eliminate such restrictions, we propose an efficient principled variational approach to uncalibrated PS under general illumination. To this end, the Lambertian reflectance model is approximated through a spherical harmonic expansion, which preserves the spatial invariance of the lighting. The joint recovery of shape, reflectance and illumination is then formulated as a single variational problem. There the shape estimation is carried out directly in terms of the underlying perspective depth map, thus implicitly ensuring integrability and bypassing the need for a subsequent normal integration. To tackle the resulting nonconvex problem numerically, we undertake a two-phase procedure to initialize a balloon-like perspective depth map, followed by a 'lagged' block coordinate descent scheme. The experiments validate efficiency and robustness of this approach. Across a variety of evaluations, we are able to reduce the mean angular error consistently by a factor of 2-3 compared to the state-of-the-art.

Involved external institutions

How to cite

APA:

Haefner, B., Ye, Z., Gao, M., Wu, T., Queau, Y., & Cremers, D. (2019). Variational uncalibrated photometric stereo under general lighting. In Proceedings of the IEEE International Conference on Computer Vision (pp. 8538-8547). Seoul, KOR: Institute of Electrical and Electronics Engineers Inc..

MLA:

Haefner, Bjoern, et al. "Variational uncalibrated photometric stereo under general lighting." Proceedings of the 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, KOR Institute of Electrical and Electronics Engineers Inc., 2019. 8538-8547.

BibTeX: Download