Make deep learning algorithms in computational pathology more reproducible and reusable

Wagner SJ, Matek C, Shetab Boushehri S, Boxberg M, Lamm L, Sadafi A, Waibel DJE, Marr C, Peng T (2022)


Publication Type: Journal article, Editorial

Publication year: 2022

Journal

DOI: 10.1038/s41591-022-01905-0

Abstract

Greater emphasis on reproducibility and reusability will advance computational pathology quickly and sustainably, ultimately optimizing clinical workflows and benefiting patient health.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Wagner, S.J., Matek, C., Shetab Boushehri, S., Boxberg, M., Lamm, L., Sadafi, A.,... Peng, T. (2022). Make deep learning algorithms in computational pathology more reproducible and reusable. Nature Medicine. https://doi.org/10.1038/s41591-022-01905-0

MLA:

Wagner, Sophia J., et al. "Make deep learning algorithms in computational pathology more reproducible and reusable." Nature Medicine (2022).

BibTeX: Download