Spatial centrosome proteome of human neural cells uncovers disease-relevant heterogeneity

O'Neill AC, Uzbas F, Antognolli G, Merino F, Draganova K, Jaeck A, Zhang S, Pedini G, Schessner JP, Cramer K, Schepers A, Metzger F, Esgleas M, Smialowski P, Guerrini R, Falk S, Feederle R, Freytag S, Wang Z, Bahlo M, Jungmann R, Bagni C, Borner GHH, Robertson SP, Hauck SM, Goetz M (2022)


Publication Type: Journal article

Publication year: 2022

Journal

Book Volume: 376

Article Number: eabf9088

Journal Issue: 6599

DOI: 10.1126/science.abf9088

Abstract

The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell–derived neural stem cells (NSCs) and neurons. Centrosome-associated proteins were largely cell type–specific, with protein hubs involved in RNA dynamics. Analysis of neurodevelopmental disease cohorts identified a significant overrepresentation of NSC centrosome proteins with variants in patients with periventricular heterotopia (PH). Expressing the PH-associated mutant pre-mRNA-processing factor 6 (PRPF6) reproduced the periventricular misplacement in the developing mouse brain, highlighting missplicing of transcripts of a microtubule-associated kinase with centrosomal location as essential for the phenotype. Collectively, cell type–specific centrosome interactomes explain how genetic variants in ubiquitous proteins may convey brain-specific phenotypes.

Involved external institutions

How to cite

APA:

O'Neill, A.C., Uzbas, F., Antognolli, G., Merino, F., Draganova, K., Jaeck, A.,... Goetz, M. (2022). Spatial centrosome proteome of human neural cells uncovers disease-relevant heterogeneity. Science, 376(6599). https://doi.org/10.1126/science.abf9088

MLA:

O'Neill, Adam C., et al. "Spatial centrosome proteome of human neural cells uncovers disease-relevant heterogeneity." Science 376.6599 (2022).

BibTeX: Download