Spin Nernst effect in a p-band semimetal InBi

Zhang Y, Xu Q, Koepernik K, Fu C, Gooth J, Van Den Brink J, Felser C, Sun Y (2020)


Publication Type: Journal article

Publication year: 2020

Journal

Book Volume: 22

Article Number: 093003

Journal Issue: 9

DOI: 10.1088/1367-2630/abaa87

Abstract

Since spin currents can be generated, detected, and manipulated via the spin Hall effect (SHE), the design of strong SHE materials has become a focus in the field of spintronics. Because of the recent experimental progress also the spin Nernst effect (SNE), the thermoelectrical counterpart of the SHE, has attracted much interest. Empirically strong SHEs and SNEs are associated with d-band compounds, such as transition metals and their alloys - the largest spin Hall conductivity (SHC) in a p-band material is for a Bi-Sb alloy, which is only about a fifth of platinum. This raises the question whether either the SHE and SNE are naturally suppressed in p-bands compounds, or favourable p-band systems were just not identified yet. Here we consider the p-band semimetal InBi, and predict it has a record SHC which is due to the presence of nodal lines in its band structure. Also the spin-Nernst conductivity is very large, but our analysis shows its origin is different as the maximum appears in a different tensor element compared to that in SHC. This insight gained on InBi provides guiding principles to obtain a strong SHE and SNE in p-band materials and establishes a more comprehensive understanding of the relationship between the SHE and SNE.

Involved external institutions

How to cite

APA:

Zhang, Y., Xu, Q., Koepernik, K., Fu, C., Gooth, J., Van Den Brink, J.,... Sun, Y. (2020). Spin Nernst effect in a p-band semimetal InBi. New Journal of Physics, 22(9). https://doi.org/10.1088/1367-2630/abaa87

MLA:

Zhang, Yang, et al. "Spin Nernst effect in a p-band semimetal InBi." New Journal of Physics 22.9 (2020).

BibTeX: Download