Polysulfide Shuttle Suppression by Electrolytes with Low-Density for High-Energy Lithium–Sulfur Batteries

Weller C, Pampel J, Doerfler S, Althues H, Kaskel S (2019)


Publication Type: Journal article

Publication year: 2019

Journal

Book Volume: 7

Article Number: 1900625

Journal Issue: 12

DOI: 10.1002/ente.201900625

Abstract

A low-density electrolyte composition is introduced for lithium–sulfur (Li–S) batteries with intrinsic and effective polysulfide shuttle suppression. Hexyl methyl ether (HME) is used in combination with 1,3-dioxolane (DOL) as a solvent for the Li–S battery electrolyte. The choice of solvent limits the dissolution of polysulfides, leading to successful suppression of the parasitic polysulfide shuttle. Hence, high coulombic efficiencies of 98% can be obtained in coin cells for over 50 cycles. The impact of the specifically adapted electrolyte solvent is studied systematically by varying solvent combinations in order to enable the development of light innovative shuttle suppressing electrolytes. In contrast to concepts relying on hydrofluoro ether dilution, the presented electrolyte features a significantly reduced mass density at 2 m lithium bis(trifluoromethanesulfonylimide) (LiTFSI) conductive salt enabling significant weight reduction on the Li–S prototype cell level, thus, allowing energy densities up to 400 Wh kg−1.

Involved external institutions

How to cite

APA:

Weller, C., Pampel, J., Doerfler, S., Althues, H., & Kaskel, S. (2019). Polysulfide Shuttle Suppression by Electrolytes with Low-Density for High-Energy Lithium–Sulfur Batteries. Energy Technology, 7(12). https://doi.org/10.1002/ente.201900625

MLA:

Weller, Christine, et al. "Polysulfide Shuttle Suppression by Electrolytes with Low-Density for High-Energy Lithium–Sulfur Batteries." Energy Technology 7.12 (2019).

BibTeX: Download