Light propagation and magnon-photon coupling in optically dispersive magnetic media

Bittencourt VASV, Liberal , Kusminskiy SV (2022)


Publication Type: Journal article

Publication year: 2022

Journal

Book Volume: 105

Article Number: A10

Journal Issue: 1

DOI: 10.1103/PhysRevB.105.014409

Abstract

Achieving strong coupling between light and matter excitations in hybrid systems is a benchmark for the implementation of quantum technologies. We recently proposed (Bittencourt, Liberal, and Viola-Kusminskiy, arXiv:2110.02984) that strong single-particle coupling between magnons and light can be realized in a magnetized epsilon-near-zero (ENZ) medium, in which magneto-optical effects are enhanced. Here we present a detailed derivation of the magnon-photon coupling Hamiltonian in dispersive media both for degenerate and nondegenerate optical modes, and show the enhancement of the coupling near the ENZ frequency. Moreover, we show that the coupling of magnons to plane-wave nondegenerate Voigt modes vanishes at specific frequencies due to polarization selection rules tuned by dispersion. Finally, we present specific results using a Lorentz dispersion model. Our results pave the way for the design of dispersive optomagnonic systems, providing a general theoretical framework for describing and engineering ENZ-based optomagnonic systems.

Involved external institutions

How to cite

APA:

Bittencourt, V.A.S.V., Liberal, ., & Kusminskiy, S.V. (2022). Light propagation and magnon-photon coupling in optically dispersive magnetic media. Physical Review B, 105(1). https://doi.org/10.1103/PhysRevB.105.014409

MLA:

Bittencourt, V. A. S. V., Liberal, and S. Viola Kusminskiy. "Light propagation and magnon-photon coupling in optically dispersive magnetic media." Physical Review B 105.1 (2022).

BibTeX: Download