THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION

Atwood WB, Abdo AA, Ackermann M, Althouse W, Anderson B, Axelsson M, Baldini L, Ballet J, Band DL, Barbiellini G, Bartelt J, Bastieri D, Baughman BM, Bechtol K, Bederede D, Bellardi F, Bellazzini R, Berenji B, Bignami GF, Bisello D, Bissaldi E, Blandford RD, Bloom ED, Bogart JR, Bonamente E, Bonnell J, Borgland AW, Bouvier A, Bregeon J, Brez A, Brigida M, Bruel P, Burnett TH, Busetto G, Caliandro GA, Cameron RA, Caraveo PA, Carius S, Carlson P, Casandjian JM, Cavazzuti E, Ceccanti M, Cecchi C, Charles E, Chekhtman A, Cheung CC, Chiang J, Chipaux R, Cillis AN, Ciprini S, Claus R, Cohen-Tanugi J, Condamoor S, Conrad J, Corbet R, Corucci L, Costamante L, Cutini S, Davis DS, Decotigny D, Deklotz M, Dermer CD, De Angelis A, Digel SW, Silva EDCE, Drell PS, Dubois R, Dumora D, Edmonds Y, Fabiani D, Farnier C, Favuzzi C, Flath DL, Fleury P, Focke WB, Funk S, Fusco P, Gargano F, Gasparrini D, Gehrels N, Gentit FX, Germani S, Giebels B, Giglietto N, Giommi P, Giordano F, Glanzman T, Godfrey G, Grenier IA, Grondin MH, Grove JE, Guillemot L, Guiriec S, Haller G, Harding AK, Hart PA, Hays E, Healey SE, Hirayama M, Hjalmarsdotter L, Horn R, Hughes RE, Johannesson G, Johansson G, Johnson AS, Johnson RP, Johnson TJ, Johnson WN, Kamae T, Katagiri H, Kataoka J, Kavelaars A, Kawai N, Kelly H, Kerr M, Klamra W, Knoedlseder J, Kocian ML, Komin N, Kuehn F, Kuss MW, Landriu D, Latronico L, Lee B, Lee SH, Lemoine-Goumard M, Lionetto AM, Longo F, Loparco F, Lott B, Lovellette MN, Lubrano P, Madejski GM, Makeev A, Marangelli B, Massai MM, Mazziotta MN, Mcenery JE, Menon N, Meurer C, Michelson PF, Minuti M, Mirizzi N, Mitthumsiri W, Mizuno T, Moiseev AA, Monte C, Monzani ME, Moretti E, Morselli A, Moskalenko IV, Murgia S, Nakamori T, Nishino S, Nolan PL, Norris JP, Nuss E, Ohno M, Ohsugi T, Omodei N, Orlando E, Ormes JF, Paccagnella A, Paneque D, Panetta JH, Parent D, Pearce M, Pepe M, Perazzo A, Pesce-Rollins M, Picozza P, Pieri L, Pinchera M, Piron F, Porter TA, Poupard L, Raino S, Rando R, Rapposelli E, Razzano M, Reimer A, Reimer O, Reposeur T, Reyes LC, Ritz S, Rochester LS, Rodriguez AY, Romani RW, Roth M, Russell JJ, Ryde F, Sabatini S, Sadrozinski HFW, Sanchez D, Sander A, Sapozhnikov L, Parkinson PMS, Scargle JD, Schalk TL, Scolieri G, Sgro C, Share GH, Shaw M, Shimokawabe T, Shrader C, Sierpowska-Bartosik A, Siskind EJ, Smith DA, Smith PD, Spandre G, Spinelli P, Starck JL, Stephens TE, Strickman MS, Strong AW, Suson DJ, Tajima H, Takahashi HH, Takahashi T, Tanaka T, Tenze A, Tether S, Thayer JB, Thayer JG, Thompson DJ, Tibaldo L, Tibolla O, Torres DF, Tosti G, Tramacere A, Turri M, Usher TL, Vilchez N, Vitale V, Wang P, Watters K, Winer BL, Wood KS, Ylinen T, Ziegler M (2009)


Publication Type: Journal article

Publication year: 2009

Journal

Book Volume: 697

Pages Range: 1071-1102

Journal Issue: 2

DOI: 10.1088/0004-637X/697/2/1071

Abstract

The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy gamma-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (4) localize point sources to 0.3-2 arcmin, (5) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (6) measure the diffuse isotropic gamma-ray background up to TeV energies, and (7) explore the discovery space for dark matter.

How to cite

APA:

Atwood, W.B., Abdo, A.A., Ackermann, M., Althouse, W., Anderson, B., Axelsson, M.,... Ziegler, M. (2009). THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION. Astrophysical Journal, 697(2), 1071-1102. https://dx.doi.org/10.1088/0004-637X/697/2/1071

MLA:

Atwood, W. B., et al. "THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION." Astrophysical Journal 697.2 (2009): 1071-1102.

BibTeX: Download