Multiband nonequilibrium GW+EDMFT formalism for correlated insulators

Golez D, Eckstein M, Werner P (2019)


Publication Type: Journal article

Publication year: 2019

Journal

Book Volume: 100

Article Number: 235117

Journal Issue: 23

DOI: 10.1103/PhysRevB.100.235117

Abstract

We study the dynamics of charge-transfer insulators after a photoexcitation using the three-band Emery model which is relevant for the description of cuprate superconductors. We provide a detailed derivation of the nonequilibrium extension of the multiband GW+EDMFT formalism and the corresponding downfolding procedure. The Peierls construction of the electron-light coupling is generalized to the multiband case resulting in a gauge invariant combination of the Peierls intraband acceleration and dipolar interband transitions. We use the formalism to study momentum-dependent (inverse) photoemission spectra and optical conductivities. The time-resolved spectral function shows a strong renormalization of the charge-transfer gap and a substantial broadening of some of the bands. While the upper Hubbard band exhibits a momentum-dependent broadening, an almost rigid band shift is observed for the ligand bands. The inverse photoemission spectrum reveals that the inclusion of nonlocal and interband charge fluctuations results in a very fast relaxation of the holes to the top of the Zhang-Rice singlet band. Consistent with the changes in the spectral function, the optical conductivity shows a renormalization of the charge-transfer gap, which is proportional to the photodoping. The details of the photoinduced changes strongly depend on the dipolar matrix elements, which calls for an ab initio determination of these parameters.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Golez, D., Eckstein, M., & Werner, P. (2019). Multiband nonequilibrium GW+EDMFT formalism for correlated insulators. Physical Review B, 100(23). https://doi.org/10.1103/PhysRevB.100.235117

MLA:

Golez, Denis, Martin Eckstein, and Philipp Werner. "Multiband nonequilibrium GW+EDMFT formalism for correlated insulators." Physical Review B 100.23 (2019).

BibTeX: Download