Pratelli A (2007)
Publication Language: English
Publication Status: Published
Publication Type: Journal article
Publication year: 2007
Publisher: Elsevier Masson / Institute Henri Poincaré
Book Volume: 43
Pages Range: 1-13
Journal Issue: 1
DOI: 10.1016/j.anihpb.2005.12.001
This paper concerns the Monge's transport problem in a general Polish space. We find optimal conditions to establish the equality between the infimum of Monge's problem and the minimum of the Kantorovich's relaxed version of the problem. A preliminary version of the results of this paper is contained in the Ph.D. thesis [A. Pratelli, Existence of optimal transport maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy, 2003. Available on http://cvamt.sns.it/]. (c) 2006 Elsevier Masson SAS. All rights reserved.
APA:
Pratelli, A. (2007). On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation. Annales de l'Institut Henri Poincaré - Probabilités Et Statistiques, 43(1), 1-13. https://doi.org/10.1016/j.anihpb.2005.12.001
MLA:
Pratelli, Aldo. "On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation." Annales de l'Institut Henri Poincaré - Probabilités Et Statistiques 43.1 (2007): 1-13.
BibTeX: Download