Third Party Funds Group - Sub project
Start date : 01.10.2012
End date : 31.10.2017
Extension date: 31.03.2018
Website: http://www.bionicum.de/forschung/projekte/muskeln/index.htm
Within the framework of the research work of the Bayerische Bionikzentrum, the project requested for this project aims to develop and operate energy-saving actuators modeled on natural muscle tissue and used in kinematics with multiple degrees of freedom. The focus should be on the functional principle of Dielectric Elastomer Actuators (DEA) for the construction of individual muscle cells and their linking to artificial muscles. In order to achieve the goal of an energy-efficient and energy-storing as well as flexible and highly dynamic actuator system, methods for producing the muscle stacks, microcontroller circuits for actuating the actuators, measuring principles and methods for determining joint positions, and finally simulation and control models for these actuators and kinematics must be developed become. In the long term, the described research will form the basis for a new generation of robotic solutions with a broad application spectrum from intrinsically safe service robots to highly dynamic mobile kinematics to bionic prostheses. In addition, the technology to be developed opens up the possibility of reproducing the most diverse forms of movement and physiological processes of living beings through the use of complexly distributed microactuators. Thus, the transfer of principle mechanisms to technical problem solutions from a wide range of different life forms can be realized.
The aim of the research project is to provide the basis for a new generation of robotic solutions through the use of Dielectric Elastomer Actuators (DEA) as artificial muscles, covering a broad range of applications from intrinsically safe service robots to highly dynamic mobile kinematics to bionic prostheses. For this purpose, the subareas of automated production of actuators, control electronics and simulation are considered in more detail. On the basis of the aerosol jet printing, a process can be qualified which produces additive and planarized dielectric elastomer actuators and sensors. In the field of power electronics, a simultaneous evaluation and control of DEA based on a central energy source is being developed. This allows the use of multiple DEA as self-sensing actuators. An electromechanically coupled simulation model allows the investigation and optimal control of robotic kinematics that are driven by artificial muscles.