Fabian Wagner



Exploring Epipolar Consistency Conditions for Rigid Motion Compensation in In-vivo X-ray Microscopy (2024) Thies M, Wagner F, Gu M, Mei S, Huang Y, Pechmann S, Aust O, et al. Conference contribution, Conference Contribution Neural Network-based Sinogram Upsampling in Real-measured CT Reconstruction (2024) Augustin L, Wagner F, Thies M, Maier A Conference contribution, Conference Contribution On the influence of smoothness constraints in computed tomography motion compensation (2024) Thies M, Wagner F, Maul N, Mei S, Gu M, Pfaff L, Vysotskaya N, et al. Conference contribution, Original article Hybrid Machine Learning Approaches for Image Reconstruction and Processing in Low-Dose Computed Tomography (2024) Wagner F Thesis Simulation-driven training of vision transformers enables metal artifact reduction of highly truncated CBCT scans (2023) Fan F, Ritschl L, Beister M, Biniazan R, Wagner F, Kreher BW, Gottschalk T, et al. Journal article, Original article Self-supervised MRI denoising: leveraging Stein’s unbiased risk estimator and spatially resolved noise maps (2023) Pfaff L, Hoßbach J, Preuhs E, Wagner F, Arroyo Camejo S, Kannengiesser S, Nickel D, et al. Journal article Gradient-based geometry learning for fan-beam CT reconstruction (2023) Thies M, Wagner F, Maul N, Folle L, Meier M, Rohleder M, Schneider LS, et al. Journal article, Original article Handling Label Uncertainty on the Example of Automatic Detection of Shepherd’s Crook RCA in Coronary CT Angiography (2023) Denzinger F, Wels M, Taubmann O, Kordon F, Wagner F, Mehltretter S, Gülsün MA, et al. Conference contribution Geometric Constraints Enable Self-Supervised Sinogram Inpainting in Sparse-View Tomography (2023) Wagner F, Thies M, Maul N, Pfaff L, Aust O, Pechmann S, Syben C, Maier A Conference contribution, Conference Contribution Unsupervised Super Resolution in X-ray Microscopy using a Cycle-consistent Generative Model (2023) Raghunath A, Wagner F, Thies M, Gu M, Pechmann S, Aust O, Weidner D, et al. Conference contribution
1 2 3 4 5